Extensions 1→N→G→Q→1 with N=C4 and Q=C22.F5

Direct product G=N×Q with N=C4 and Q=C22.F5
dρLabelID
C4×C22.F5160C4xC2^2.F5320,1088

Semidirect products G=N:Q with N=C4 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C41(C22.F5) = C202M4(2)φ: C22.F5/C5⋊C8C2 ⊆ Aut C4160C4:1(C2^2.F5)320,1112
C42(C22.F5) = C208M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C4160C4:2(C2^2.F5)320,1096

Non-split extensions G=N.Q with N=C4 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C4.1(C22.F5) = Dic5.23D8φ: C22.F5/C5⋊C8C2 ⊆ Aut C4160C4.1(C2^2.F5)320,262
C4.2(C22.F5) = Dic5.12Q16φ: C22.F5/C5⋊C8C2 ⊆ Aut C4320C4.2(C2^2.F5)320,268
C4.3(C22.F5) = C20.6M4(2)φ: C22.F5/C5⋊C8C2 ⊆ Aut C4320C4.3(C2^2.F5)320,1126
C4.4(C22.F5) = C20.26M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C4320C4.4(C2^2.F5)320,221
C4.5(C22.F5) = Dic5.13D8φ: C22.F5/C2×Dic5C2 ⊆ Aut C4320C4.5(C2^2.F5)320,222
C4.6(C22.F5) = C20.23C42φ: C22.F5/C2×Dic5C2 ⊆ Aut C4804C4.6(C2^2.F5)320,228
C4.7(C22.F5) = C20.29M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C4804C4.7(C2^2.F5)320,250
C4.8(C22.F5) = C20.30M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C4160C4.8(C2^2.F5)320,1097
C4.9(C22.F5) = C20.31M4(2)central extension (φ=1)320C4.9(C2^2.F5)320,218
C4.10(C22.F5) = C10.M5(2)central extension (φ=1)320C4.10(C2^2.F5)320,226
C4.11(C22.F5) = C10.6M5(2)central extension (φ=1)160C4.11(C2^2.F5)320,249
C4.12(C22.F5) = C20.34M4(2)central extension (φ=1)160C4.12(C2^2.F5)320,1092

׿
×
𝔽